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Abstract: An artificial receptor having both a 2,6_diamidopyridine 

hydrogen bonding site and a naphthalene stacking site selectively 

quenched (5-deazajflavin fluorescence and inhibited flavin-mediated 

photo-oxidation of 1,4_butanedithiol. 

Recent advances in molecular recognition have shown that strong and 

selective complexation of a substrate can be achieved by incorporating com- 

plementary binding groups within a synthetic cleft or cavity.'r2 In this 
paper we report a study on the molecular recognition of flavins and the ef- 

fect of complexation on their fluorescence and photo-redox properties. 

The versatility of flavin coenzymes as biological electron transfer 

catalysts is due, in part, to modification of their rodex properties by dif- 

ferent enzyme active sites.3 Synthetic models containing elements of a 

protein environment in the form of covalently linked hydrophobic or chiral 

features have been reported.4-6 However, the design and synthesis of com- 
plementary receptors represent a novel approach to the modification of flavin 

reactivity via non-covalent interactions. The flavin receptors were based on 

the hydrophobic interaction with the phenyl moiety as well as the hydrogen- 

bonding interaction with the pteridine moiety.3 This suggests that the two- 

site binding strategy, which has been applied to the recognition of 

nucleotide bases, 7 is also useful to modification of flavin reactivity. In- 
corporation of suitable amide and hydrophobic groups within a macrocyclic 

framework leads to receptors capable of simultaneous hydrogen bonding and 

aromatic stacking to a substrate. 8 

First, we estimated the influence of added quenchers (2_-4_) on the 

fluorescence intensity of la-ld in chloroform. ccrry The fluorescence intensity of 

lb and ld, having a methyl group at N(3) position, was scarcely affected by 

the addition of these quenchers. The fluorescence intensity of La and 12, 
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having an acidic proton at N(3) position, was not affected by the addition of 

2 (at least at-4x 10m4 M) but was significantly quenched by the addition of 

J_ and 2 (Fig. 1). Continuous variation plots (at [L] + [quencher] = 4.50 x 

lob5 M) gave a clear break point at 0.5, supporting the view that fluores- 

cence quenching is due to the formation of a 1:l complex. We thus determined 

the association constants (K) according to the Benesi-Hildebrand equation 

(Table 1). 

The association of 2 and 2 with 2_ and 2 is primarily due to hydrogen 

bonding interactions between the pteridine moiety of isoalloxazine and the 

2,6_diamidopyridine moiety of 2_ and 2 (as shown in 2). It is known that the 

strong flavin (with H at N(3) position) fluorescence disappears at high PH.' 

This is attributed to the dissociation of 3-NH to 3-N- (pK, ca. 10). Hence, 

the fluoresence decrease observed for k and A is attributed to the "partial 

dissociation" of 3-NH. In contrast, stacking interactions between the isoal- 

loxazine ring and naphthalene ring are less important in the association in 

chloroform solvent where hydrophobic interactions are scarcely expected. As 

shown in Fig. 1 and Table 1, however, I/I, (relative fluorescence intensity) 

for +2_ is always smaller than that for 4. The difference is explained only by 

the occurrence of pseudo-intramolecular quenching of the singlet excited 

state by the naphthalene ring of bound 2_. Thus, the naphthalene ring in 3 

can quench the flavin fluorescence in an intramolecular manner (as shown in 

2). 
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In order to obtain an insight into the influence of these specific quen- 

chers on flavin reactivities, we carried out flavin-mediated photo-oxidation 

of 1,4-butanedithiol to the disulfide in chloroform. The reaction was 

carried out in an anaerobic Thunberg cuvette immersed in a thermostatted 

water-bath (further details of the reaction conditions are recorded in a 

footnote to Table 2). The absorbance of flavins decreased with photo- 

irradiation time and the plots of log A/A, vs. time were approximated by the 

first-order equation for up to 25 % reaction. The results (Table 2) indicate 

that the significant rate inhibition is observed only for 2 + 2_ (3.4 times 

slower than that in the absence of 2_). The finding supports the idea that 

receptor z acts as an efficient inhibitor for flavin-mediated photo-oxidation 

as long as the 3-NH 

In summary, we 

site receptors. In 

flavin fluorescence 

tions. 

group of flavins is not modified. 

have shown that flavins form strong complexes to our two- 

addition, binding leads to a substantial quenching of the 

emission and inhibition of flavin-mediated redox reac- 

Fig. 1. Fluorescence 

quenching of 2 by a 

molecular hinge (2) and 

its analogs. la showed Cy 
similar plots. The 

measurement conditions 

are recorded in a 

footnote to Table 1. 
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Table I. Association constants (K, M-') 

determined by fluorescence quechinga) 

Flavin Quencher 

3 4 

5 3500(0.67)b) n.e. 2800(0.75)b) 

lb n.e. 

z 450:;::66)b) n.e 

< 

45001be;l)b) 

n-e. n.e. n.e. 

a) 

b) 

Chloroform, 25 OC, excitation 370 

nm, emission 507 nm for '& and lb 

and 457 nm for 

2.00 x 1O-5 M, 

2 and 2, [L] = 

[q uencher] = (2.5-40) 

x 10 -5 M . N.e. denotes "no effect". 

The number in parenthesis indicates 

the relative fluoresence intensity 

(I/I,) at [quencherl/[Ll = 20. 
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Table 2. Apparent first-order rate 

constants (k, min-') for photo- 

oxidation of 1,4-butanedithola) 

Flavin Quencher 

None 2 4 

k 0.013 0.0038 0.014 

lb 0.010 0.011 0.0092 

a) Chloroform, 30 oc, 17-w 

fluorescent 

2.00 x 10-5 
lamp, N2, rl_l = 

4.00 x 10-4 

M, 12 or 4-1 = 

M. [1,4- 

butanedithiol] = 5.00 x 10e3 M. 

The distance between the lamp 

and the reaction cell was 14 

cm. The data are average 

values of four runs (relative 

error, less than 15 %). 
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